Zeitschrift EE

Zurück zu den Beiträgen

2008-04: Nachhaltige Gebäude

Projektinformationen und Service

Energy Globe Steiermark in der Kategorie Wasser für ein Gebäudesanierungsprojekt

Der 1874 erbaute ehemalige Gutshof Pöllau 18 war seit Jahren dem Verfall preisgegeben. Von einem privaten Bauherrn erworben, wurde er mit viel Liebe zum Detail umfassend saniert und zu einer Wohnanlage ausgebaut. So unterschiedliche Bereiche wie Material, Energie, Wasser und sozialer Lebensraum wurden berücksichtigt. Oberstes Ziel war dabei immer, das Gebäude auf möglichst nachhaltige Weise zu sanieren, um damit auch den Nutzern beste Wohnqualität zu bieten. Energie- und Wasserkonzept wurden von der AEE INTEC entwickelt.


Das zukunftsweisende Wasserkonzept, mit Regenwassersammlung, Reinigung und Wiederverwendung von Grauwasser (Abwasser aus dem Bad ohne Toilette) und einer Pflanzenkläranlage für den Toilettenablauf wurde mit dem „Energy Globe Styria Award“ 2008 in der Kategorie Wasser ausgezeichnet.
Zeitgleich gewinnt Mag. Manfred Feistritzer am 13. Oktober 2008 den Innovationspreis des Steirischen Vulkanlandes in der Kategorie Lebenskraft.

Abbildung 2: Von Links: LR Manfred Wegscheider, Joseph Schröttner und Christian Platzer (AEE INTEC), Manfred Feistritzer (Bauherr), Barbara und Martin Regelsberger (AEE INTEC), LR Johann Seitinger

Weitere Informationen
www.vulkanland.at, www.spuren.at/lebenstraeume
www.aee-intec.at
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Zurück zu den Beiträgen

2008-04: Nachhaltige Gebäude

Projektinformationen und Service

Null-Energie-Gebäude im Netz?
Ein neues IEA – Projekt wurde gestartet

Null-Energie-Gebäude an sich sind kein neues Konzept. Angeregt durch die aktuelle Energiediskussion werden am Markt bereits Nullenergie- oder auch Plusenergiehäuser in allen Facetten angeboten. Keiner dieser Begriffe unterliegt jedoch einer klaren Definition und bezieht sich nur auf das einzelne Objekt als „Stand – alone“ – Lösung.

Im Rahmen eines neuen internationalen IEA - Forschungsprogramms wird nun eine international anerkannte Definition von Null-Energie-Gebäuden ausgearbeitet und die Rahmenbedingungen definiert. Die Teilnahme von Projektpartnern aus 10 Ländern, sowie das Interesse von 7 weiteren Nationen zeigt die Aktualität der Thematik. Außerdem kann durch die Vielzahl an internationalen Beteiligten ein breites Spektrum an verschiedenen Klimazonen, Bauweisen, Gebäudetypologien und standortspezifischen Rahmenbedingungen abgedeckt werden.

Teilnehmende Staaten:
Deutschland, Frankreich, Kanada, Niederlande, Neuseeland, Norwegen, Portugal, Schweden, USA, Österreich;
Weiters haben auch Belgien, Dänemark, Italien, Korea, Polen, Brasilien und Spanien ihr Interesse an der Mitarbeit bekundet.

Kann ein Gebäude überhaupt „Null Energie“ verbrauchen?

Unbestritten ist, dass selbst bei optimaler Konzeption ein gewisser Bedarf an Restenergie für Heizen, Kühlen, Beleuchtung oder Betrieb benötigt wird. Die Vernetzung der einzelnen, bisher autonom existierenden Akteure eröffnet aber neue, bis jetzt noch nicht genutzte Chancen. Der Ausgleich von Spitzenlasten kann innerhalb eines Gesamtsystems erfolgen, das Netz dient nicht nur der Verteilung, sondern auch der Zwischenspeicherung. Der Ausgleich zwischen Energiebereitstellung und Energiebedarf erfolgt über Strom- und Wärmenetze.
Österreich wird durch die AEE INTEC in diesem Forschungsprogramm vertreten. Die Analyse bestehender, autonomer Null- Energiegebäude und Studien über Netzinteraktionen müssen die Basis für die weitere Arbeit bilden. Ein wesentlicher Schwerpunkt wird aber die Entwicklung von innovativen und auch architektonisch wegweisenden Konzepten für netzintegrierte Systemlösungen sein.

IEA Joint Project
SHC Task 40/ ECBCS Annex 52

Weitere Informationen „NZEB“ - Entwicklung von netzintegrierten Null – Energie- Gebäuden sind auf der Task-Website zu finden:
http://www.iea-shc.org/task40/
http://www.aee-intec.at

Zurück zu den Beiträgen

2008-04: Nachhaltige Gebäude

 

Wassermanagement

Abbildung 1: Bisherige Wasserversorgung am geplanten Wasserhaus-Standort

Ob in Europa oder in Entwicklungs- oder Schwellenländern, viele innovative Technologien haben mit mangelnder Akzeptanz seitens der Nutzer zu kämpfen. Bei Sanitärkonzepten trifft dies in besonderem Maße zu, da diese in die Privatsphäre eingreifen. Wie viele andere Neuentwicklungen auch, verlangen neue Sanitärkonzepte in der Regel eine Änderung des Nutzerverhaltens. Um beispielsweise das richtige Funktionieren von Trenntoiletten zu gewährleisten, müssten sich Männer angewöhnen, im Sitzen zu urinieren.

Entwicklung von Sanitärkonzepten im Dialog mit Nutzern und Nutzerinnen¹
¹ Der besseren Lesbarkeit halber wird im Folgenden ausschließlich die männliche Form verwandt; es sind jedoch Männer und Frauen gleichermaßen gemeint.

Von Friederike Arnold*

Jedoch sind gerade im Sanitärbereich Verhaltensänderungen besonders schwierig zu bewirken: In vielen Kulturkreisen ist alles, was im weitesten Sinn mit „Toilette“ zu tun hat, ein Tabuthema, so dass diesbezügliche Kommunikation schwierig ist.
Aus den Wirtschaftswissenschaften ist bekannt, dass die Beteiligung von Kunden an der Produktentwicklung zum Produkterfolg beiträgt. Die Forschung zur Akzeptanz erneuerbarer Energien zeigt, dass die Partizipation der zukünftigen Nutzer einer Technologie an der Implementierung förderlich für die Nutzerakzeptanz ist. Auch für die Entwicklung und Umsetzung innovativer Sanitärkonzepte ist die Beteiligung an allen Phasen des Entwicklungsprozesses von der Idee über den Bau eines Prototyps bis hin zur Implementierung sinnvoll.

Nutzerbeteiligung

Gründe für die Beteiligung der Nutzer an der Entwicklung neuer Sanitärkonzepte gibt es viele: Potenzielle Nutzer können als Experten ihres eigenen Lebens betrachtet werden; besser als jeder Außenstehende können sie darüber Auskunft geben, welche Gewohnheiten sie pflegen und welche Bedürfnisse sie haben. Während bei einigen Entwicklungsingenieuren die technische Machbarkeit im Vordergrund steht, denken Nutzer eher an praktische Relevanz. Durch den Austausch mit zukünftigen Nutzern wird sichergestellt, dass Konzepte auf die Nutzerbedürfnisse zugeschnitten sind und auch tatsächlich genutzt werden. Nicht zuletzt gehört es auch zum Verständnis von Demokratie, dass die Menschen bei den Themen, die sie betreffen, die Möglichkeit zur Mitsprache haben.
Wird ein Sanitärkonzept bereits für einen speziellen Ort, wie beispielsweise einen Wohnkomplex, entwickelt, sprechen noch weitere Gründe für die enge Einbindung der Nutzer: Auch hier erhöht die Beteiligung die Wahrscheinlichkeit, dass das Konzept zu den Nutzern passt. Zudem bewirkt die Nutzerbeteiligung an sich eine erhöhte Akzeptanz, wie beispielsweise die Möglichkeit, Fragen zu stellen, eigene Vorschläge einzubringen und an Entscheidungen teilzuhaben. Durch eine umfassende Information der Nutzer, die mit einer Beteiligung notwendig einhergehen muss, können sich nach und nach Einstellungen verändern.

Möglichkeiten der Nutzereinbindung

Es gibt verschiedene Möglichkeiten, zukünftige Nutzer in die Entwicklung von Sanitärkonzepten einzubeziehen. Beispielsweise wurde mit INNOCOPE (INNOvating through COnsumer-integrated Product dEvelopment, s. http://www.gelena.net/) ein Verfahren entwickelt, mit dessen Hilfe im Dialog zwischen Kunden und Unternehmen
nachhaltige Produkte entwickelt werden können. In der Lead User Methode werden Nutzer, die mit ihren Bedürfnissen dem Markttrend voraus sind (sogenannte Lead User), für die Entwicklung innovativer Konzepte zu Workshops eingeladen.
Eine weitere Möglichkeit ist das Durchführen von Fokusgruppen, ein Verfahren aus der qualitativen Marktforschung. Mit dieser Methode lassen sich sowohl in frühen Entwicklungsphasen Ideen generieren als auch in späteren Phasen Produktvorschläge diskutieren. Zudem ist sie relativ unaufwändig. Deswegen soll diese Methode im Folgenden anhand eines Fallbeispiels vorgestellt werden.

Entwicklung des Kommunalen Wasserhauses

An der Universität Potsdam wird derzeit ein Projekt durchgeführt, das zum Ziel hat, ein alternatives Konzept für eine dezentrale Wasserver- und -entsorgung ländlicher Siedlungen zu entwickeln und dieses exemplarisch in einer ländlichen Kommune in der Provinz Eastern Cape in Südafrika umzusetzen. Das Projekt wird vom Bundesministerium für Bildung und Forschung gefördert (Fkz 02WD0737 bis 0742) und in Kooperation mit verschiedenen Firmenpartnern umgesetzt (siehe auch www.wasserhaus-suedafrika.de). Wie in Abbildung 2 zu sehen, bietet das Wasserhaus die Möglichkeit, an einem zentralen Ort nach Geschlechtern getrennt zu duschen und Wäsche zu waschen. Das Dusch- und Waschwasser wird nach Gebrauch aufbereitet und kann erneut verwendet werden. Für die benötigten Pumpen sowie zum Erwärmen von Wasser und des Gebäudes selbst (im Winter) wird Sonnenenergie verwendet.

Abbildung 2: Darstellung des Kommunalen Wasserhauses

Die Idee für ein kommunales Wasserhaus entstand in Gesprächen mit Menschen, die in ländlichen Gegenden Südafrikas leben. Mit Jansenville in der Ikwezi Municipality wurde ein Ort für den Bau des ersten Wasserhauses gefunden. Derzeit wird der Prototyp in enger Zusammenarbeit mit südafrikanischen Behörden sowie der Verwaltung der Ikwezi Municipality entwickelt. Im Rahmen einer Versammlung wurden die Bewohner von Jansenville darüber informiert, dass der Bau eines kommunalen Wasserhauses geplant ist.

Gründung von Fokusgruppen

Um etwas über die Vorstellungen und Erwartungen und Befürchtungen der potenziellen Nutzer zum Wasserhaus zu lernen, wurden drei Fokusgruppen durchgeführt. Fokusgruppen sind moderierte Gruppen, die über ein Thema diskutieren, beispielsweise ein sich in der Entwicklung befindendes Produkt. In diesem Fall wurden den Teilnehmern anhand einer Zeichnung (siehe Abbildung 2) Fragen zum Wasserhaus als ganzes sowie zu einzelnen Aspekten (Duschen, Wäsche waschen) gestellt. Der Moderator achtete darauf, dass alle Teilnehmer zu Wort kamen und lenkte die Diskussion ggf. zum Thema zurück.
An der ersten Gruppe nahmen fünf Jugendliche teil, an der zweiten sechs jüngere Frauen, an der dritten sieben ältere Frauen (siehe Abbildung 3). Aus organisatorischen Gründen konnte bisher noch keine Fokusgruppe mit Männern durchgeführt werden; diese könnten mit Sicherheit noch weitere Aspekte beitragen.
Alle Fokusgruppen wurden auf Tonband aufgezeichnet, transkribiert und ggf. ins Englische übersetzt. Folgende Aspekte wurden als relevant für die Nutzerakzeptanz identifiziert:

  • Privatsphäre beim Duschen;
  • Sicherheit der Nutzer: Sicherheit vor sexuellen Übergriffen, Kleider-Diebstahl während des Duschens etc.;
  • Hygiene: Sauberkeit der Räume;
  • Wasserqualität: bessere Qualität als das bisher verfügbare, übel riechende Leitungswasser;
  • Zuverlässigkeit des Service;
  • Zugang zum Wasserhaus ohne Diskriminierung.

Vorschläge zur Umsetzung dieser Punkte wurden teilweise bereits in die Diskussionen eingebracht wie beispielsweise das Einbauen getrennter, mit Riegeln verschließbarer Duschkabinen oder das Überwachen des Wasserhauses durch eine Respektsperson im Vorraum. Um sicherzustellen, dass die Vorschläge der Nutzer bei der Umsetzung berücksichtigt werden, wird ein Steuerungskomitee eingerichtet, das sich aus Mitgliedern aller Bevölkerungs- und Interessensgruppen zusammensetzt.

Fazit

Die Notwendigkeit, die Nutzer einzubeziehen, ist besonders offenkundig beim internationalen Technologietransfer, da hier kulturelle und geographische Distanzen zwischen Nutzern und Entwicklern eine Rolle spielen. Als Ursache für viele gescheiterte Technologietransfer-Projekte wird mangelnde Kooperation mit Endnutzern sowie mit lokalen Institutionen gesehen. Aber auch bei Entwicklungen für das eigene Land können die (potenziellen) Nutzer wertvolle Beiträge leisten. Partizipative Prozesse benötigen zwar Ressourcen, aber deren Nutzen für das Produkt und die Akzeptanz desselben sollte nicht unterschätzt werden. Mit der Durchführung von Fokusgruppen kann ein erster Schritt zu einem Dialog zwischen Entwicklern und Nutzern getan werden.

*) Friederike Arnold ist Mitarbeiterin an der HANS-SAUER-PROFESSUR für Metropolen- und Innovationsforschung am Geographischen Institut der Humboldt-Universität zu Berlin, Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein! [^]

Zurück zu den Beiträgen

2008-04: Nachhaltige Gebäude

Projektinformationen und Service

(Quelle: Steinwender)
Zertifizierte Solarwärmeausbildung gewinnt Energy Globe

Idee, Umsetzungskonzept und Breitenwirkung der „Zertifizierten Solarwärmeausbildung“ überzeugten die hochkarätige Fachjury

Neben dem Sieg in der Einzelkategorie „Feuer“ hat die Initiative „Zertifizierte Solarwärmeausbildung“ auch den Gesamtsieg bei der diesjährigen Vergabe des „Energy Globe Styria Award“ errungen. Bei der regionalen Stufe des internationalen „Energy Globe Award“ überreichten Umweltlandesrat Ing. Manfred Wegscheider und Wohnbaulandesrat Johann Seitinger die begehrten Trophäen an die Vertreter des Projektteams Ing. Christian Fink (verantwortlicher Projektleiter) und Ing. Ewald Selvička (Geschäftsführer von AEE INTEC). Die Zertifizierte Solarwärmeausbildung wird österreichweit angeboten und ist Teil des erfolgreichen klima:aktiv Programms solarwärme, das von den Institutionen AEE INTEC, arsenal research und dem Verband Austria Solar durchgeführt wird.


Abbildung 1:
Umweltlandesrat Ing. Manfred Wegscheider (li.) und Wohnbaulandesrat Johann Seitinger (re.) überreichten den Energy Globe an Christian Fink und Ewald Selvička (beide AEE INTEC) (Quelle; Foto Fischer/NOEST)

Weitere Informationen
Weitere Informationen zur Ausbildung erhalten Sie bei der solarwärme Infohotline unter 03112 / 588612 oder auf der umfassendsten Solarwebsite unter www.solarwaerme.at.

Zurück zu den Beiträgen

2008-04: Nachhaltige Gebäude

Solarthermie

Abbildung 1: SuN mit Erdbecken-Wärmespeicher in Neckarsulm (Quelle: ITW Universität Stuttgart)

Solar unterstützte Nahwärmeversorgungen mit Langzeit-Wärmespeicherung ermöglichen unter attraktiven wirtschaftlichen Randbedingungen hohe solare Deckungsanteile von rund 50 % am Jahres-Gesamtwärmebedarf für große Einzelverbraucher oder Nahwärmegebiete. In Deutschland wurden innerhalb der Bundes-Forschungsprogramme Solarthermie-2000 und Solarthermie2000plus elf Pilotanlagen errichtet, die die technologische Reife und hohe Energieeinsparungen im Vergleich zu konventionellen Wärmeversorgungen nachweisen.

Solare Nahwärme mit Langzeit-Wärmespeicherung in Deutschland
Aktueller Stand und umgesetzte Projekte

Von Thomas Schmidt und Dirk Mangold*

Solar unterstützte Nahwärmeversorgungen mit Langzeit-Wärmespeicherung (SuN mit LZWSP) haben zum Ziel, einen großen Teil (mindestens 50 %) des jährlichen Gesamtwärmebedarfes der angeschlossenen Verbraucher mit solarer Wärme zu decken. Der prinzipielle Aufbau ist in Abbildung 2 gezeigt.
Die von den Sonnenkollektoren gewonnene Wärme wird über das Solarnetz zur Heizzentrale transportiert und bei Bedarf direkt an die Gebäude verteilt. Die Kollektoren sind in der Regel auf ausgewählten Dächern der Gebäude montiert, die möglichst nahe der Heizzentrale stehen. Der Langzeit-Wärmespeicher ist in den Untergrund eingebaut. Das über das Wärmeverteilnetz gelieferte Heizwasser versorgt die Heizung und Trinkwassererwärmung der Gebäude. Die Wärmeerzeugung in der Heizzentrale verwendet die im Langzeit-Wärmespeicher gespeicherte Solarwärme und heizt bei Bedarf nach. Hinweise zur Auslegung und Realisierung von SuN mit LZWSP sind in (Hahne, 1998) beschrieben.

Abbildung 2: Aufbau einer solar unterstützten Nahwärme mit Langzeit-Wärmespeicher

Erste Pilotanlagen zur SuN mit LZWSP wurden innerhalb des Bundes-Forschungsprogramms Solarthermie-2000 errichtet und sind seit 1996 in Betrieb. Das seit 2004 laufende Nachfolgeprogramm Solarthermie2000plus des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) ermöglicht weitergehende Forschungs- und Entwicklungsarbeiten sowie die Realisierung weiterer Demonstrationsvorhaben, um das Solarsystem, die Speichertechnologien und die notwendige umfassende Systemintegration schrittweise bis zur Marktreife hin weiterzuentwickeln.

Langzeit-Wärmespeicher

Bei der Langzeit- bzw. saisonalen Speicherung von Solarwärme gelten folgende Grundsätze:
Die Sonne liefert in den Monaten Mai bis September rund zwei Drittel der in einem Jahr in Deutschland eingestrahlten Solarenergie. Der Hauptteil des jährlichen Wärmeverbrauchs von Wohngebäuden liegt dagegen mit deutlich über zwei Dritteln in der Heizperiode zwischen Oktober und April. Um große Teile der hierzu aufgewendeten fossilen Energien einzusparen, muss Solarenergie im Sommer gewonnen und in saisonalen Wärmespeichern bis in den Winter gespeichert werden.
Werden zur saisonalen Wärmespeicherung Behälter verwendet, sind diese in der Regel in das Erdreich integriert und sehr gut wärmegedämmt. Die Speicherhülle hat im heißesten Bereich (bis 98 °C) einen U-Wert von unter 0,10 W/m²K. Bei einer Wärmespeicherung direkt im Untergrund in Aquifer- oder Erdsonden-Wärmespeichern muss gegebenenfalls ganz auf eine Wärmedämmung verzichtet werden. Zur Begrenzung der Wärmeverluste müssen diese Speicher eine ausreichende Größe bzw. ein kleines Oberflächen-zu-Volumen-Verhältnis (A/V-Verhältnis) aufweisen, oder/und die maximale Speichertemperatur muss reduziert werden.

Erforderliche Speichergröße

Ein saisonaler Wärmespeicher für ein Einfamilienhaus erfordert meist eine Speichergröße von mindestens 20 m³ Wasser. Sein A/V-Verhältnis beträgt dabei etwa das Achtfache im Vergleich zu einem Speicher mit 10.000 m³ Volumen. Dadurch sind auch die volumenbezogenen Wärmeverluste des kleinen Speichers acht Mal höher. Erst ab einer Mindestgröße von 1.000 m³ Wasservolumen beginnt saisonale Wärmespeicherung energetisch effizient zu sein.
Durch Latentwärme- oder thermochemische Speicher, die Wärme durch Phasenwechsel- bzw. Ab- oder Adsorptionsvorgänge speichern, kann die saisonale Wärmespeicherung auch in geringerer Speichergröße energetisch effizient sein. Seit einigen Jahren sind diese Techniken wieder in den Blickpunkt der Forschung gerückt. Erste Speicher dieser Art sind am Markt erhältlich, es bleibt jedoch abzuwarten, ob sie, insbesondere aus wirtschaftlicher Sicht, zur saisonalen Wärmespeicherung eingesetzt werden können.
Seit dem Jahr 2000 sind vier Bauprinzipien für Langzeit-Wärmespeicher, Behälter-, Erdbecken-, Erdsonden- und Aquifer-Wärmespeicher, in mindestens einer Pilotanlage realisiert und in Betrieb, siehe auch (Mangold, Schmidt, 2006). Den Funktionsnachweis konnten alle bislang realisierten Speicher vollständig erbringen, auch wenn die Effizienz der ersten Speicher geringer als erwartet ist. Die wesentlichen Ursachen hierfür sind:
Die Netzrücklauftemperaturen, auf die die Speicher auskühlen können, sind in den ersten Anlagen bis über 15 K höher als erwartet. Dies reduziert die nutzbare Wärmekapazität der Speicher und erhöht die Wärmeverluste zur Umgebung. Bei heutigen Anlagen werden strenge Anforderungen an die Hydraulik in den Gebäuden und die Wärmeverteilsysteme gestellt, um niedrige Rücklauftemperaturen zu garantieren. In einigen Anlagen sind zudem Wärmepumpen integriert, um die Entladung der Speicher auch bei höheren Rücklauftemperaturen sicherzustellen.
Die Dämmwirkung der eingesetzten Wärmedämmmaterialien nimmt bei höheren Temperaturen (40 bis 90 °C) aufgrund der durch den Einbau im Erdreich verursachten geringen Feuchte wesentlich stärker ab als zum Planungszeitpunkt bekannt war. Heute ist diese Wissenslücke geschlossen und es sind Dämmmaterialien, wie z.B. Blähglasgranulat und Schaumglasschotter, verfügbar, die bei dementsprechender Bauteilkonstruktion eine hohe Dämmwirkung dauerhaft und ohne Schädigung ermöglicht.

Thermische Schichtung

Die Temperaturschichtung in den ersten Speichern ist geringer als die mit den damals vorhandenen Rechenmodellen berechnete. Dadurch reduziert sich die nutzbare Temperatur im Deckenbereich und die Temperaturen und damit die Wärmeverluste im weniger stark oder ungedämmten Bodenbereich erhöhen sich. Heute kommen in den Behälterspeichern überwiegend Schichtladeeinrichtungen zum Einsatz, um eine gute thermische Schichtung auch bei stark wechselnden Temperaturniveaus der eintretenden Fluidströme zu gewährleisten.

Realisierte Demonstrationsanlagen

Bis Sommer 2008 wurden insgesamt elf SuN mit LZWSP in Deutschland realisiert. Tabelle 1 gibt einen Überblick über die wesentlichen Kenndaten dieser Anlagen. Zu jeder Anlage sind umfangreiche Beschreibungen sowie Ergebnisse dokumentiert, siehe z.B. (Benner et.al., 1999; Benner et.al., 2003; Bodmann et.al., 2005).

Tabelle 1: Realisierte Pilotanlagen von SuN mit LZWSP in Deutschland

  Hamburg&sup1  Friedrichshafen&sup1
Planung im Endausbau (Stand 1-07)
 Neckarsulm&sup1
Phase I (Phase II)
Steinfurt4 Chemnitz² Rostock³ Hannover4 Attenkirchen5 München Crailsheim 1.BA (Stand 11-08) Eggenstein
Jahr der Inbetriebnahme 
1996
1996
1997 (2001)
1998
2000
(aB: 2006)
2000
2000
2002
2007
2007
2008
Versorgungsgebiet 
124 RH
Endausbau: 570 WE in MFH (390)
6 MFH, Einkaufszentrum, Schule, Sporthalle, Altenheim etc.
42 WE in 22 EFH und kleinen MFH
Planung: Bürogebäude, Hotel und Einkaufszentrum
108 WE in MFH
106 WE in MFH
30 EFH
300 WE in MFH
260 WE in EFH, DH u. RH, Schule, Sporthalle
Schul- und Sportzentrum, Feuerwehr
14800
14800
39500 (33000)
(25000)
3800
4680
7000
7365
6200
24800
40000
120006
Kollektorfläche [m²]
3000 FK
5600 FK (4050)
2700 FK (5470)
510 FK
540 VRK
1000 FK
1350 FK
800 FK
2900 FK
7300 FK (5500 FK)
1600 FK
Speichervolumen [m³]
4500 HWWS
12000 HWWS
100 HWWS + 20000 EWS (200+63300)
1500 KWWS
8000 KWWS
30 HWWS 20000 AWS
2750 HWWS
500 HWWS + 9350 EWS
5700 HWWS
480 + 100 HWWS + 37500 EWS
4500 KWWS
Gesamtwärmebedarf [MWh /a]
1610
4160 (3000)
1663 (2200)
325
1. BA: 573
497
684
487
2300
4100
1150
Nutzwärmelieferung Solarsystem * [MWh/a]
789
1915
832
110
1. BA: 169
307
269
378
10805
2050¹
430
Solarer Deckungsanteil*[%] 
49
47
50
34
1. BA: 30
62³
39
55#
475
50¹
37*
Kosten Solarsystem§[Mio.€]  
2,2
3,2
3,5
0,5
1.+2. BA: 1,4
0,7
1,2
0,76
2,9
4,5
1,16
Solare Wärmekosten *§[Ct /kWh] 
25,7
15,9
26,5
42,3
1.+2. BA: 24,0
25,5
41,4
19,0
24,0
19,0
25

 

* : Berechnete Werte für den langfristigen Betrieb,
# : Primärenergieeinsparung,
§ : ohne MwSt. und Förderung, inkl. Planung

 

¹ : Angaben ITW Universität Stuttgart,
² : Angaben TU Chemnitz,
³ : Angaben Geothermie Neubrandenburg GmbH,
4 : Angaben IGS Universität Braunschweig,
5 : Angaben ZAE Bayern,
6 : AngabenPfeil & Koch Ingenieurgesellschaft GmbH & Co.KG

aB : außer Betrieb;
BA : Bauabschnitt;
DH : Doppelhaus;
EFH : Einfamilienhaus;
MFH : Mehrfamilienhaus;
RH: Reihenhaus;
WE: Wohneinheit;

FK: Flachkollektor;
VRK: Vakuum-Röhren-Kollektor;
HWWS: Heißwasser-Wärmespeicher;
KWWS: Kies/Wasser-Wärmespeicher;
EWS: Erdsonden-Wärmespeicher;
AWS: Aquifer-Wärmespeicher

Die beiden neuesten sich bereits in Betrieb befindlichen Anlagen wurden in München und in Crailsheim erbaut. Im ersten Fall werden Wohnungen in verdichteter, städtischer Mehrfamilienhausbebauung versorgt (Abbildung 3), im zweiten Fall besteht das Versorgungsgebiet überwiegend aus Einfamilien- und Doppelhäusern (Abbildung 4).

Abbildung 3: Langzeit-Wärmespeicher und Mehrfamilienhaus mit Solardach in München

In München wurde ein aus Beton-Fertigteilen hergestellter Heißwasser-Wärmespeicher mit einem Volumen von 6000 m³ realisiert. Der Behälter ist rundum wärmegedämmt (Boden: Schaumglasschotter, Wand und Decke: Blähglasgranulat), die Dämmschicht ist durch eine wasserdichte, jedoch diffusionsoffene Konstruktion dauerhaft vor Durchfeuchtung geschützt. Zur Entladung des Speichers auf Temperaturen unterhalb des Rücklauf-Temperaturniveaus des Wärmeverteilnetzes ist eine Absorptionswärmepumpe mit einer Heizleistung von 550 kW in das System integriert. Der Antrieb der Wärmepumpe erfolgt über das Fernwärmenetz der Stadtwerke München.

Abbildung 4: Versorgungsgebiet SuN mit LZWSP in Crailsheim

Das Solarsystem in Crailsheim besteht aus zwei gekoppelten Teilen: einer Solaranlage mit Kurzzeit-Wärmespeicher (Kollektoren auf Mehrfamiliengebäuden, Schule und Sporthalle, Abbildung 4 oben links) und einem saisonalen Teil (Kollektoren auf Lärmschutzwall, Pufferspeicher und saisonaler Erdsonden-Wärmespeicher (unten in Abbildung 4). Beide Anlagenteile haben eigene Heizzentralen, die über eine Fernwärmeleitung miteinander gekoppelt sind. Der Anlagenteil mit Kurzzeit-Wärmespeicher reicht weitgehend aus, um den Wärmebedarf des Wohngebietes im Sommer zu decken. Die Kollektoren auf dem Lärmschutzwall beladen in dieser Zeit den Erdsonden-Wärmespeicher. In der Heizperiode kann Wärme vom saisonalen Teil an den Kurzzeit-Wärmespeicherteil geliefert werden. Zwischen dem Pufferspeicher des saisonalen Teils und dem Kurzzeit-Wärmespeicher des ersten Teils arbeitet bei Bedarf eine Wärmepumpe, die eine weitergehende Entladung des Erdsonden-Wärmespeichers unter Rücklauftemperaturniveau ermöglicht.
Der Erdsonden-Wärmespeicher besteht in einer ersten Ausbaustufe aus 80 Erdwärmesonden (Doppel-U-Rohr-Sonden aus vernetztem Polyethylen (PEX)), die in eine Tiefe von 55 m reichen. Das dadurch erschlossene Erdreichvolumen beträgt 37.500 m³. Der Speicher ist zur Oberfläche hin wärmegedämmt (50 cm Schaumglasschotter) und wird bei Temperaturen zwischen 20 und 65 °C betrieben, kurzzeitig sind Beladetemperaturen von bis zu 90 °C möglich. Der Pufferspeicher im Saisonalteil der Anlage wird als Leistungspuffer für die Solarkollektoren benötigt, da die mögliche Leistungsaufnahme des Erdsonden-Wärmespeichers zu gering ist.

Wirtschaftlichkeit

Der Vergleich der solaren Wärmekosten einer großen Solaranlage mit Kurzzeit-Wärmespeicher mit denen einer Kleinanlage zur Trinkwassererwärmung (Abbildung 5) zeigt, dass das Kosten-Nutzen-Verhältnis einer Kleinanlage mit solaren Wärmekosten von 16 – 35 €Ct./kWh im Mittel nahezu doppelt so hoch ist wie das einer Großanlage mit Kurzzeit-Wärmespeicher (10 - 21 €Ct./kWh).

Abbildung 5: Vergleich von System- und solaren Nutzwärmekosten thermischer Solaranlagen (Kostenangaben ohne MwSt. und Förderung, inkl. Planung)

Der Kostenvorteil solarer Großanlagen im Vergleich zu Kleinanlagen wird vor allem durch deren günstigeren Systempreis verursacht: während Kleinanlagen im Durchschnitt 700 - 950 €/m² Flachkollektorfläche kosten, werden bei Großanlagen 500 - 670 €/m² Systemkosten erzielt.
Die solaren Wärmekosten von SuN mit LZWSP liegen mit 21 - 24 €Ct./kWh im Bereich der Kleinanlagen zur Trinkwassererwärmung. Hierbei sind jedoch die weitaus höheren erreichbaren solaren Deckungsanteil im Vergleich zu den Kleinanlagen zu beachten.
Ziel der F+E-Förderung für SuN mit LZWSP ist es, bis zum Jahr 2020 die Marktfähigkeit der LZWSP zu erreichen. Die laufenden Entwicklungen werden hierzu bei Erhöhung der Zuverlässigkeit und Effizienz der Speicherkonstruktionen die Baukosten weiter reduzieren.

Danksagung

Die diesem Bericht zugrunde liegenden Vorhaben wurden mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit unter den Förderkennzeichen 0329607L und 0329607N gefördert. Die Autoren danken für diese Unterstützung. Die Verantwortung für den Inhalt dieses Berichtes liegt bei den Autoren.

Literatur

  • Benner M., Mahler B., Mangold D., Schmidt T., Schulz M., Seiwald H., Hahne E., (1999), Solar unterstützte Nahwärmeversorgung mit und ohne Langzeit-Wärmespeicher; Forschungsbericht zum BMFT-Vorhaben 0329606C, ITW, Universität Stuttgart, ISBN-Nr.: 3-9805274-0-9
  • Benner M., Bodmann M., Mangold D., Nußbicker J., Raab S., Schmidt T., Seiwald H., (2003), Solar unterstützte Nahwärmeversorgung mit und ohne Langzeit-Wärmespeicher. Forschungsbericht zum BMBF/BMWA-Vorhaben 0329606S, ITW, Universität Stuttgart, ISBN 3-9805274-2-5
  • Bodmann M., Mangold D., Nußbicker J., Raab S., Schenke A., Schmidt T., (2005), Solar unterstützte Nahwärme und Langzeit-Wärmespeicher (Februar 2003 bis Mai 2005). Forschungsbericht zum BMWA/BMU-Vorhaben 0329607F, SWT-Stuttgart
  • Hahne, E. et. al., (1998), Solare Nahwärme - Ein Leitfaden für die Praxis, BINE-Informationspaket, TÜV-Verlag, Köln, 1998, ISBN 3-8249-0470-5
  • Mangold, D., Schmidt, T., (2006), Saisonale Wärmespeicher: neue Pilotanlagen im Programm Solarthermie2000plus und Forschungsperspektiven. BMU/ BMWi-Statusseminar Thermische Energiespeicherung, 2. und 3.11.2006, Freiburg

Abbildung 6: Bau des Erdbecken-Wärmespeichers in Eggenstein

*) Dipl.-Ing. Thomas Schmidt ist Mitglied der Geschäftsleitung des Steinbeis Forschungsinstituts Solites in Stuttgart, Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!, www.solites.de
Dipl.-Ing.
Dirk Mangold ist Leiter des Steinbeis Forschungsinstituts Solites in Stuttgart, Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein! [^]

Top of page